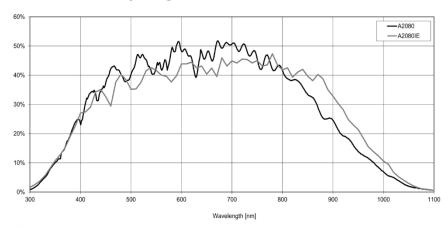
SpotOptics s.r.l. – leaders in accurate metrology

OMI-UV to NIR

VERSATILE WAVEFRONT SENSOR


- Accurate metrology in single pass
- Optical elements, lasers and laser diodes
- Test any focal length and diameter (with accessories)
- Large dynamic range
- For R&D and production
- Optimized for UV->NIR wavelength ranges (300-1100nm)
- High sampling

TECHNICAL SPECIFICATIONS (GENERAL)	
HARDWARE	
Test	Optical elements, lasers and laser diodes
Power of laser diode that can be tested	Few mW. Higher powers require a power reduction system (available)
No of spots (see cameras below)	75x75 (UV-VIS-NIR) for a pupil of 15mm
Diameter and focal length of standard lenslet arrays	 φ=0.2mm,f=22mm- for UV-Vis region from 300-750nm φ=0.2mm,f=11mm - for NIR region - from 750-1100nm
SOFTWARE	
Software (control and analysis)	Sensoft for 64bit Win7, Win 8.1, Win 10
RMS repeatability of Zernike coefficients	<2nm rms (λ/800 @ 1550nm)
RMS repeatability of modal wavefront measurements	< λ/100
Accuracy and dynamic range	$\lambda/20$ - $\lambda/100$ (calibration dependent), -±50 λ
CAMERA	
Detector, wavelength range and cooling	CMOS (UV-VIS-NIR). Uncooled.
Resolution, pixel size, chip size	2080 x 2080 pixels each of 8.0 μm. 16 x 16 mm ²
Connection, A/D convertor bits	Gigabit Ethernet, 12-bits
Acquisition speed	15Hz
Triggering	Yes
Exposure time (max)	~500msec
ACCESSORIES	
Light sources, beam expanders and compressors	High quality LD with lens at test wavelength, beam expanders/compressors

OMI UV-VIS-NIR (from 300nm-1100nm)

Quantum Efficiency Image Sensor

Quantum efficiency curve of CMOS Other details

other actains

• Resolution: 2080 x 2080 pixels

Pixel size: 8 μm x 8 μm

• Chip size: 16 mm x 16 mm

Image rate: 15Hz (full resolution)

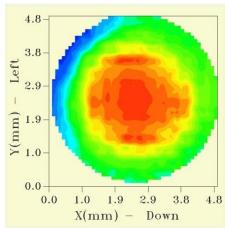
• Saturation: ≥900,000e^{-,} SNR: 300

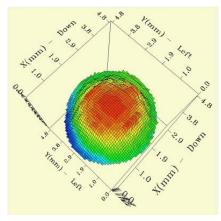
• Max. exp. Time: ~500 ms

• Connection: Gigabit Ethernet

OMI UV-VIS-NIR

Other details


• Resolution: 75x75 spots (max)


Lenslet pitch and focal length (UV and VIS): 0.2mm, 22mm

• Lenslet pitch and focal length (NIR): 0.2mm, 11mm

• Calibration unit for parallel light: Static or motorized highquality collimator with LD/LED at test wavelength

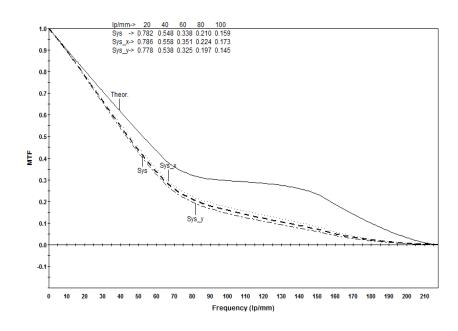
• Motor step: 2.5μm

SENSOFT: THE SOFTWARE

Sensoft: The modular software package

- Fully controls the hardware of OMI
- Performs the Shack-Hartmann (SH) analysis
- Computes Zernike coefficients, diagnostics (alignment and correct focal plane),
 zonal and modal wavefront, MTF, spot diagram
- Has a Loop mode for on-line adjustment of optical systems

OMI in your production line:


- OMI with its own PC can easily be adapted to the production line
- It can work in a closed-loop with the PC of the manufacturing machine
- A software module defines the IP communication protocol and transfers the results
 between the PCs in the Local Area Network

O M I -U V

ON-LINE ALIGNMENT IN A FAST LOOP

Zernike coefficient (nm) 140 120 100 80 60 40 20 Ast Ast X Ast Y Ast Ast Y Ast Ast Y Ast Ast Y Coma decreases

MTF MEASUREMENTS

- The alignment of complex optical systems becomes easy by monitoring coma and astigmatism in a continuous loop
- The individual (x, y) components of coma and astigmatism, as well as the total coefficients are displayed
- The optimization can be done for one component at a time, as the software can display one component of interest

MTF after subtracting the contributions of tilt and defocus present in the data.

O M I -U

OMI with UV-VIS CAMERA

Calibration light source: LD/LED at different wavelengths (parallel or pinhole for test with collimator)

Input test beam

OMI

- fl=22mm, ϕ = 0.2mm for UV-Vis (300-750nm)
- fl=11mm, ϕ = 0.2mm for NIR (750-1100nm)
- Max. Resolution 75x75 spots

PHYSICAL

Camera:

CMOS, Gigabit Ethernet, 12-14bits (300-1100nm)

Dimensions

120 (L) x 60 (W) x 60 (H) mm

Weight: ~500gm

KEY FEATURES

Measurement technique

Shack-Hartmann wavefront sensor

Test in parallel light or at the lens focus in single pass

Parallel light (with a calibration unit)

At the focus of the lens (with pinhole calibration unit)

Light sources with different wavelength available

Calibration units available

High-quality parallel light source (motorized or manual)

Pinhole calibration unit

Accessories

Light sources and beam expanders/compressors. Collimators

SOFTWARE

- Full waterfront analysis: Zernikes, zonal and modal WF, Spot diagram, MTF, EE, PSF, M²
- Easy alignment of lens group via software: graphical indication for correction using coma and astigmatism
- Stabilization of lasers: graphical indication of focusing of laser beam