Tel. +31 111 413656 Fax. +31 111 416919 www.deltapowersupplies.com Order Code ## SM 3300 with Power Sink Option 2 Quadrant operation: Source and Sink SM 18-220 P306 SM 66-AR-110 P308 SM 100-AR-75 P309 SM 330-AR-22 P310 SM 660-AR-11 P311 Models SM66-AR-110 The Power Sink Option permits the power supply to absorb bursts of power fed back to the unit. An internal module senses the status of power supply and sinks current across the output terminals, thus maintaining a constant output voltage. The Power Sink Option allows a faster response when the power supply is step programmed to a lower voltage at low load conditions. - Can absorb up to 300 W peak power - Maintains output voltage setting regardless output power is positive or negative (source and sink) - Ideal solution for supplying electric motors with PWM-speed control. These systems often return power to the power supply during a braking action - Ideal solution for ATE systems requiring fast down programming at no load conditions - · Generation Automotive waveforms (fast) SM18-220 with Power Sink Option Current - 40 A means the load delivers 40 A to the power supply (sink operation) Upper trace: output voltage Lower trace: output current (current switching from +80 A to -40 A at Vo=6 V) SM18-220 **without** Power Sink Option The output voltage is out of control when the output current is **negative** Upper trace: output voltage Lower trace: output current (current switching from +80 A to -40 A at Vo=6 V) | Power Sink Specifications | SM18-220
<i>Option P306</i> | SM66-AR-110
<i>Option P308</i> | SM100-AR-75
<i>Option P309</i> | SM330-AR-22
<i>Option P310</i> | SM660-AR-11
<i>Option P311</i> | |--|---|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| | Sink Power Rating max. peak power (electronically limited) max. continuous power (T _{amb} . = 25 °C) max. continuous power (T _{amb} . = 50 °C) | 300W
300W
275W | | | | | | Max. duration Sink Peak Power $P_{\text{Sink}} = \! P_{\text{max}}$, $T_{\text{amb.}} = 25~^{\circ}\text{C}$ | continuous @ P _{sink} =300 W | | | | | | Duty Cycle for use at Peak Power $P_{sink} = P_{max}$, T_{amb} . = 25 °C | 100% @ P _{sink} =300 W | | | | | | Max. Sink Current $(V_0 >= 2 \text{ V and } P <= P_{max})$ | Limited at 75 A | Limitedat
75 A | Limited at 75 A | Limited at 10 A | Limited at 10 A | | Protection | Electronic Power Limit limits the current.
The temperature of the power sink is fan controlled and
the circuit shuts down in case of thermal overload. | | | | | | Recovery time / Deviation Vo = 6 V, I_o : +100 A \rightarrow -30 A recovery within 100 mV / deviation: | di/dt=-2.5A/μs
400μs/0.30V | di/dt=-2.5A/μs
750μs/1.20V | - | - | - | | Vo = 15 V, I_o : +100 A \rightarrow -10 A recovery within 100 mV / deviation: | di/dt=-2.5A/μs
450μs/0.30V | di/dt=-2.5A/μs
600μs/0.85V | - | - | - | | Vo = 24 V, I _o : +70 A \rightarrow -7.5 A recovery within 100 mV / deviation: | - | di/dt=-1.5A/μs
1.1 ms/0.90 V | di/dt=-1.8A/μs
600μs/0.65 V | - | - | | Vo = 60 V, I_o : +35 A \rightarrow -3 A recovery within 100 mV / deviation: | - | di/dt=-1.0A/μs
2.0 ms/0.90 V | di/dt=-0.8A/μs
2.2 ms/0.60 V | - | - | | Vo = 300 V, I_o : +8 A \rightarrow -0.5 A recovery within 1 V / deviation: | - | - | - | di/dt=-0.3A/μs
1.0 ms/1.9 V | di/dt=-0.15A/μs
0.5 ms/3.0 V | | Vo = 600 V, I_0 : +4 A \rightarrow -0.25 A recovery within 1 V / deviation: | - | - | - | - | di/dt=-0.07A/μs
1.5 ms/3.0 V | | (load current switches from positive to negative) | note: values
are typical | | Programming Down Speed Fall time at no load (90 - 10%) Fall time at no load <i>without Power Sink</i> | (6→0V)
2.3 ms
1.2 s | (33→0V)
5.6ms
3.5s | (50→0V)
11.5ms
2.3s | (165→0V)
14 ms
3.5 s | (330→0V)
12 ms
3.5 s | | Fall time at no load (90 - 10%)
Fall time at no load <i>without Power Sink</i> | (18→0V)
14.8ms
4.2 s | (66 → 0 V)
23ms
5 s | (100 → 0 V)
45.0ms
9.4s | (330→0V)
50 ms
12 s | (660→0 V)
45 ms
11 s | | Unit with Fast Programming Option | P306+P300
(6→0V) | P308+P302 (33→0 V) | <i>P309+P303</i> (50→0 V) | P310+P304 (165→0V) | <i>P311+P305</i> (330→0 V) | | Fall time at no load (90 - 10%) Fall time at no load without Power Sink | 0.09ms
23ms | 0.55 ms
150ms | 0.48ms
60.6ms | 1.5ms
600ms | 2.2 ms
720 ms | | Fall time at no load (90 - 10%)
Fall time at no load <i>without Power Sink</i> | (18→0V)
0.3ms
34ms | (66 → 0 V)
1.5ms
600ms | (100 → 0 V)
1.4ms
425ms | (330→0V)
4.8 ms
2s | (660→0V)
8ms
3.8s | | Parallel and Series operation Refer to power sink manual for details and restrictions. | Using multiple units in parallel operation, only one unit can have a power sink .
Using multiple units in series operation, all units must have a power sink . | | | | | Notes: - The maximum sink current at higher voltages will not be the maximum specified current due to the power limit. For example for an SM66-AR-110 at 30V, the max sink current will be 10 A (30 V x 10 A = 300 W = max power). - A higher sink current than the maximum current will cause the output voltage to rise. SM66-AR-110 with Power Sink Option fast discharge of output capacitors by Power Sink circuit Trace: output voltage Voltage Programming Speed at NO LOAD SM66-AR-110 without Power Sink Option slow response time during voltage step down, time needed to discharge the output capacitors Trace: output voltage Voltage Programming Speed at NO LOAD